a) Maxwell-Boltzmann distribution b) Fermi-Dirac distribution c) Bose-Einstein distribution a) Maxwell-Boltzmann distribution // Define the constants and energy range mu = 0.0; tempE1 = 0.1; tempE2 = 0.5; eps = [0.01:0.01:2]'; // Calculate the distribution functions feps1 = exp(-(eps-mu)/tempE1); feps2 = exp(-(eps-mu)/tempE2); // Plot the distribution functions clf(); plot2d(eps, feps1, style = 2); plot2d(eps, feps2, style = 3); xgrid(); xlabel("$\epsilon$", "fontsize", 5, "color", black); ylabel("$f(\epsilon)$", "fontsize", 5); title("Maxwell-Boltzmann distribution at different temperatures"); // Display a legend for the two curves legend(["T = " + string(tempE1), "T = " + string(tempE2)], location = "northwest"); b) Fermi-Dirac distribution // Define the constants and energy range mu = 2.0; tempE1 = 0.1; tempE2 = 0.5; eps = [0.01:0.01:6]'; // Calculate the distribution functions feps1 ...
Plot Planck’s law for Black Body radiation and compare it with Raleigh-Jeans Law at high temperature and low temperature -Scilab
experiment - 3 // Define frequency ranges and constants omega = [0.1:0.1:10]; omegar = [0.1:0.1:2]; A = 1.0; B = 1.0; Temp = 1.0; // Calculate energy density using Planck's law and Raleigh-Jeans law enr = A * omega.^3 ./ (exp(B*omega/Temp) - 1); rj = A * omegar.^2; // Plot the two functions clf(); plot2d(omega, enr, style = 1); plot2d(omegar, rj, style = 4); xgrid(); xlabel("$\omega$", "fontsize", 5, "color", black); ylabel("$u(\omega, T)$", "fontsize", 5);